

biosignal acquisition tool-kit for high-level research applications

Lab Streaming Layer Guide – Receiving OpenSignals Streams with PythonTM

OpenSignals (r)evolution
Lab Streaming Layer Module Python Guide LSLPY 04012019

1 of 16

ATTENTION

Please read this manual before
using your PLUX product(s) and

this software

The information contained in this manual has been carefully checked and were made every
effort to ensure its quality. PLUX reserves the right to make changes and improvements to this
manual and products referenced at any time without notice.

The word Bluetooth and its logo are trademarks of Bluetooth SIG Inc. and any use of such
marks is under license. Other trademarks are the property of their respective own.

This module is part of the OpenSignals (r)evolution software (introduced with the release of
December 2018). Reading the software’s user manual is highly recommended:

http://biosignalsplux.com/downloads/OpenSignals_(r)evolution_User_Manual-print.pdf

http://biosignalsplux.com/downloads/OpenSignals_(r)evolution_User_Manual-print.pdf

OpenSignals (r)evolution
Lab Streaming Layer Module Python Guide LSLPY 04012019

2 of 16

PLUX Wireless Biosignals S.A.
email: plux@plux.info
web: http://www.plux.info

Headquarters
Zona Industrial das Corredouras, Lt. 14 – 1°
2630-369 Arruda dos Vinhos
Portugal
tel.: +351 263 978 572
fax: +351 263 978 902

Lisbon Office
Av. 5 de Outubro, n° 79 – 8°
1050-059 Lisboa
Portugal
tel.: +351 211 956 542
fax: +351 211 956 546

mailto:plux@plux.info
http://www.plux.info/

OpenSignals (r)evolution
Lab Streaming Layer Module Python Guide LSLPY 04012019

3 of 16

DISCLAIMER

OpenSignals (r)evolution, biosignalsplux & BITalino products are intended for use in life
science education and research applications only; they are not medical devices, nor medical
software solutions, nor are they intended for medical diagnosis, cure, mitigation, treatment
or prevention of disease and is provided to you “as is”.

OpenSignals (r)evolution uses Google Chrome as the rendering engine for the graphical user
interface. Google Chrome is a web browser developed by Google Inc. PLUX is neither
responsible for its content, nor for its functionality.

We expressly disclaim any liability whatsoever for any direct, indirect, consequential,
incidental or special damages, including, without limitation, lost revenues, lost profits, losses
resulting from business interruption or loss of data, regardless of the form of action or legal
theory under which the liability may be asserted, even if advised of the possibility of such
damages.

OpenSignals (r)evolution
Lab Streaming Layer Module Python Guide LSLPY 04012019

4 of 16

TABLE OF CONTENTS

DISCLAIMER .. 3

1 Introduction .. 5

2 OpenSignals Configuration .. 5
2.1 Configuring Acquisition Devices in OpenSignals (r)evolution .. 5
2.2 Lab Streaming Layer Configuration (OpenSignals (r)evolution) 5

3 Receiving OpenSignal Stream with Python ... 7
3.1 Receving data from an unspecified OpenSignals stream .. 8

4 Regulatory & Legal Information ... 15
4.1 Disclaimer .. 15
4.2 Certification ... 15
4.3 Contact & Support .. 15

OpenSignals (r)evolution
Lab Streaming Layer Module Python Guide LSLPY 04012019

5 of 16

1 Introduction

The Lab Streaming Layer (LSL) module of the OpenSignals (r)evolution software is aimed to
facilitate the support and data exchange between the 3rd party and the OpenSignals
(r)evolution software. It has been introduced with the OpenSignals release of December 2018
and is based on the open-source LSL system which can be found on GitHub:

https://github.com/sccn/labstreaminglayer

As found in its official description, “LSL is a system for the unified collection of measurement
time series in research experiments that handles both the networking, time-synchronization,
(near-) real-time access as well as optionally the centralized collection, viewing and disk
recording of the data”. This system enables OpenSignals (r)evolution to stream multi-channel
sensor data acquired using biosignalsplux and BITalino kits to third 3rd party applications
where only few lines of code are required to receive real-time sensor data.

This guide is inteneded to demonstrate and guide the proper configuration of the module to
enable real-time signal acquisition and streaming between OpenSignals (r)evolution and a LSL
compatible 3rd party software. Additionally, examples are provided in the In this configuration,
OpenSignals (r)evolution will act as a server while the 3rd pary software will act as the client.

2 OpenSignals Configuration

The information below guides you through the set up process to activate the stream in the
OpenSignals (r)evolution software.

2.1 Configuring Acquisition Devices in OpenSignals (r)evolution
Before using any device for acquisition via the LSL it is necessary to establish a Bluetooth
connection with your computer and the PLUX device(s) first and to configure the acquisition
devices in the OpenSignals (r)evolution software.

Follow the instructions in the OpenSignals (r)evolution user manual to learn how to properly
set up your devices for signal acquisitions (Section 2.2):

http://biosignalsplux.com/downloads/OpenSignals_(r)evolution_User_Manual-print.pdf

2.2 Lab Streaming Layer Configuration (OpenSignals (r)evolution)
Open the settings panel of the OpenSignals (r)evolution software by clicking on the following
icon which can be find in the software’s main screen.

In the settings panel, click on the INTEGRATION tab and select the Lab Streaming Layer
checkbox to start the server as seen in Figure 1.

OpenSignals (r)evolution settings

https://github.com/sccn/labstreaminglayer
https://www.biosignalsplux.com/en/
http://bitalino.com/en/
http://biosignalsplux.com/downloads/OpenSignals_(r)evolution_User_Manual-print.pdf

OpenSignals (r)evolution
Lab Streaming Layer Module Python Guide LSLPY 04012019

6 of 16

Figure 1: Settings panel with the activated LSL module.

NOTE
The LSL module has to be reactivated as described in this section after errors occur as a
proper connection has to be re-established.

After this step, you can start the acquisition when you are ready to receive data in your 3rd
party application.

OpenSignals (r)evolution
Lab Streaming Layer Module Python Guide LSLPY 04012019

7 of 16

3 Receiving OpenSignal Stream with Python

The LSL system allows you to receive signal streams using different identifiers of your choice.
In this section, 3 different options are presented which can be useful for different usecases.

Option 1: Receive data from an unspecified OpenSignals stream
Use case: Only one instance of OpenSignals is being used, there are no other machines in

the network using OpenSignals & the LSL.

Option 2: Receive data from an specific biosignalsplux or BITalino device using the

device’s MAC-address
Use case: When multiple devices are being used & you need access to the stream of a

specific device.

Option 3: Receive data from a specific host
Use case: Multiple machines in your network are running OpenSignals & you need access

ot the stream of a specific machine.

The different code example for the different cases are provided in the following cases.

NOTE
Python needs access to your network in order to receive data. Please ensure that the Python
is not being blocked by your firewall.

NOTE
The examples shown in this section are based on the official pylsl ReceiveData.py example
which can be found on GitHub:

https://github.com/labstreaminglayer/liblsl-
Python/blob/d95f40e878111620600f7d6dc6b45b62ac961776/pylsl/examples
/ReceiveData.py

The example scripts presented in this document are available in the .ZIP file where this
document can be found.

https://github.com/labstreaminglayer/liblsl-Python/blob/d95f40e878111620600f7d6dc6b45b62ac961776/pylsl/examples/ReceiveData.py
https://github.com/labstreaminglayer/liblsl-Python/blob/d95f40e878111620600f7d6dc6b45b62ac961776/pylsl/examples/ReceiveData.py
https://github.com/labstreaminglayer/liblsl-Python/blob/d95f40e878111620600f7d6dc6b45b62ac961776/pylsl/examples/ReceiveData.py

OpenSignals (r)evolution
Lab Streaming Layer Module Python Guide LSLPY 04012019

8 of 16

3.1 Receving Data From an Unspecified OpenSignals Stream

Use Case
Only one instance of OpenSignals is being used, there are no other machines in the network
using OpenSignals & the LSL.

First, we need to import the necessary StreamInlet class and resolve_stream function from the
pylsl which are required to resolve the signal stream.

Imports
from pylsl import StreamInlet, resolve_stream

Code Snippet 1: Importing the pylsl package.

Specify the name of the stream using pylsl’s resolve_stream function. In the case of
OpenSignals, the stream name is set to OpenSignals.

Resolve an available OpenSignals stream
print("# Looking for an available OpenSignals stream...")
os_stream = resolve_stream("name", "OpenSignals")

Code Snippet 2: Resolving an available OpenSignals stream.

This function will block the script from running until an OpenSignals stream has been resolved.
When found, the script will proceed to the next step by creating an inlet (data receiver) using
the StreamInlet() class.

Create an inlet to receive signal samples from the stream
inlet = StreamInlet(os_stream[0])

Code Snippet 3: Creating an inlet to revice the streamed samples.

The inlet is now ready to receive data which. A simple example on how to receive signal
samples from OpenSignals using a while loop is shown below.

while True:
 # Receive samples
 sample, timestamp = inlet.pull_sample()
 print(timestamp, sample)

Code Snippet 4: Simple example loop for continuously receving incoming samples.

The entire, summarized script can be found on the on the next page.

OpenSignals (r)evolution
Lab Streaming Layer Module Python Guide LSLPY 04012019

9 of 16

"""
OpenSignals Lab Streaming Layer - Receiving data OpenSignals
--

Example script to show how to receive a (multi-)channel signal stream from
OpenSignals (r)evolution using the Lab Streaming Layer (LSL).
"""

Imports
from pylsl import StreamInlet, resolve_stream

Resolve an available OpenSignals stream
print("# Looking for an available OpenSignals stream...")
os_stream = resolve_stream("name", "OpenSignals")

Create an inlet to receive signal samples from the stream
inlet = StreamInlet(os_stream[0])

while True:
 # Receive samples
 sample, timestamp = inlet.pull_sample()
 print(timestamp, sample)

Code Snippet 5: Example code showing how to receive samples from an OpenSignals LSL stream.

OpenSignals (r)evolution
Lab Streaming Layer Module Python Guide LSLPY 04012019

10 of 16

3.2 Receving Data From a Specific PLUX Device in an OpenSignals Stream

Use Case
When multiple devices are being used & you need access to the stream of a specific device,
you can use the devic’s MAC-address to identify the stream. The device’s MAC-address can
be found on the back of the device.

First, we need to import the necessary StreamInlet class and resolve_stream function from the
pylsl which are required to resolve the signal stream.

Imports
from pylsl import StreamInlet, resolve_stream

Code Snippet 6: Importing the pylsl package.

Specify the MAC-addrees of the device using pylsl’s resolve_stream function.

Define the MAC-address of the acquisition device used in OpenSignals
mac_address = "A1:B2:C3:D4:E5:F6"

Resolve stream
print("# Looking for an available OpenSignals stream from the specified
device...")
os_stream = resolve_stream("type", mac_address)

Code Snippet 7: Resolving an available OpenSignals stream using the acquisition device's MAC-address.

This function will block the script from running until an OpenSignals stream has been resolved.
When found, the script will proceed to the next step by creating an inlet (data receiver) using
the StreamInlet() class.

Create an inlet to receive signal samples from the stream
inlet = StreamInlet(os_stream[0])

Code Snippet 8: Creating an inlet to revice the streamed samples.

The inlet is now ready to receive data which. A simple example on how to receive signal
samples from OpenSignals using a while loop is shown below.

while True:
 # Receive samples
 sample, timestamp = inlet.pull_sample()
 print(timestamp, sample)

Code Snippet 9: Simple example loop for continuously receving incoming samples.

The entire, summarized script can be found on the on the next page.

OpenSignals (r)evolution
Lab Streaming Layer Module Python Guide LSLPY 04012019

11 of 16

"""
OpenSignals Lab Streaming Layer - Receiving data from a specific PLUX device
--

Example script to show how to receive a (multi-)channel signal stream from
OpenSignals (r)evolution & a specific PLUX device using the Lab Streaming Layer
(LSL) and the device's MAC-address.

"""

Imports
from pylsl import StreamInlet, resolve_stream

Define the MAC-address of the acquisition device used in OpenSignals
mac_address = "A1:B2:C3:D4:E5:F6"

Resolve stream
print("# Looking for an available OpenSignals stream from the specified
device...")
os_stream = resolve_stream("type", mac_address)

Create an inlet to receive signal samples from the stream
inlet = StreamInlet(os_stream[0])

while True:
 # Receive samples
 samples, timestamp = inlet.pull_sample()
 print(timestamp, samples)

Code Snippet 10: Example code showing how to receive samples

from an OpenSignals LSL stream using a device’s MAC-address.

OpenSignals (r)evolution
Lab Streaming Layer Module Python Guide LSLPY 04012019

12 of 16

3.3 Receving Data From a Specific Host Providing the OpenSignals Stream

Use Case
Multiple machines in your network are running OpenSignals & you need access ot the
stream of a specific machine. The host name is the name of the computer streaming the
data.

First, we need to import the necessary StreamInlet class and resolve_stream function from the
pylsl which are required to resolve the signal stream.

Imports
from pylsl import StreamInlet, resolve_stream

Code Snippet 11: Importing the pylsl package.

Specify the host name of the host machine using pylsl’s resolve_stream function.

Define the name of the host streaming the sensor data
hostname = "HOSTNAME"

Resolve stream
print("# Looking for an available OpenSignals stream from the specified host...")
os_stream = resolve_stream("hostname", hostname)

Code Snippet 12: Resolving an available OpenSignals stream using the name of the host machine.

This function will block the script from running until an OpenSignals stream has been resolved.
When found, the script will proceed to the next step by creating an inlet (data receiver) using
the StreamInlet() class.

Create an inlet to receive signal samples from the stream
inlet = StreamInlet(os_stream[0])

Code Snippet 13: Creating an inlet to revice the streamed samples.

The inlet is now ready to receive data which. A simple example on how to receive signal
samples from OpenSignals using a while loop is shown below.

while True:
 # Receive samples
 sample, timestamp = inlet.pull_sample()
 print(timestamp, sample)

Code Snippet 14: Simple example loop for continuously receving incoming samples.

The entire, summarized script can be found on the on the next page.

OpenSignals (r)evolution
Lab Streaming Layer Module Python Guide LSLPY 04012019

13 of 16

"""
OpenSignals Lab Streaming Layer - Receiving data from a specific host computer
--

Example script to show how to receive a (multi-)channel signal stream from
OpenSignals (r)evolution from a specific host using the Lab Streaming Layer (LSL)
and the host name.

"""

Imports
from pylsl import StreamInlet, resolve_stream

Define the name of the host streaming the sensor data
hostname = "HOSTNAME"

Resolve stream
print("# Looking for an available OpenSignals stream from the specified host...")
os_stream = resolve_stream("hostname", hostname)

Create an inlet to receive signal samples from the stream
inlet = StreamInlet(os_stream[0])

while True:
 # Receive samples
 samples, timestamp = inlet.pull_sample()
 print(timestamp, samples)

Code Snippet 15: Example code showing how to receive samples

from an OpenSignals LSL stream using a specified host.

OpenSignals (r)evolution
Lab Streaming Layer Module Python Guide LSLPY 04012019

14 of 16

3.4 Receving Stream Metadata

After resolving a stream (as presented on the previous pages) you can get the stream meta
data using the info() method of the inlet() object.

Get information about the stream
stream_info = inlet.info()

Code Snippet 16: Get all the available information about the OpenSignals LSL stream using the info() method.

Afterwards, you can use the methods below to get general information about the stream such
as the stream name, the MAC-address of the device (type), the host name and the number
streamed channels.

Get individual attributes
stream_name = stream_info.name()
stream_mac = stream_info.type()
stream_host = stream_info.hostname()
stream_n_channels = stream_info.channel_count()

Code Snippet 17: Get specific channel info attributres.

The channel configuration (channel number, sensor type, and unit) can be accessed by using
the desc() method. The example below shows how to get all the channel information while
storing the information in a Python dictionary.

Store sensor channel info & units in dictionary
stream_channels = dict()
channels = stream_info.desc().child("channels").child("channel")

Loop through all available channels
for i in range(stream_n_channels - 1):

 # Get the channel number (e.g. 1)
 channel = i + 1

 # Get the channel type (e.g. ECG)
 sensor = channels.child_value("sensor")

 # Get the channel unit (e.g. mV)
 unit = channels.child_value("unit")

 # Store the information in the stream_channels dictionary
 stream_channels.update({channel: [sensor, unit]})
 channels = channels.next_sibling()

Code Snippet 18: Example snippet showing how the sensor channel, type, and unit from all the streamed sensor channels.

OpenSignals (r)evolution
Lab Streaming Layer Module Python Guide LSLPY 04012019

15 of 16

4 Regulatory & Legal Information

4.1 Disclaimer
All mentioned OpenSignals (r)evolution, biosignalsplux and BITalino products in this manual
are intended for use in life science education and research applications only; they are not
medical devices, nor medical software solutions, nor are they intended for medical diagnosis,
cure, mitigation, treatment or prevention of disease and is provided to you “as is”.

We expressly disclaim any liability whatsoever for any direct, indirect, consequential,
incidental or special damages, including, without limitation, lost revenues, lost profits, losses
resulting from business interruption or loss of data, regardless of the form of action or legal
theory under which the liability may be asserted, even if advised of the possibility of such
damages.

4.2 Certification
OpenSignals (r)evolution and any PLUX device connected to this software do not have a
medical device certification and are, therefore, not a medical device.

PLUX research products are intended for use in life science education and research
applications with humans and not intended for diagnostics, cure, mitigation, treatment or
prevention of disease.

4.3 Contact & Support
Contact us if you’re experiencing any problems that cannot be solved with the information
given in the biosignalsplux or OpenSignals (r)evolution manual. We’ll get back to you as soon
as possible to find the best solution for your problem.

Please send us an e-mail with precise information about the error occurrence, device
configuration, and, if possible, screenshots of the problem to support@plux.info.

mailto:support@plux.info

